
George Dafermos and Johan Soderberg

Abstract

Examining the "way in which capital exploits the volunteer labour of free sofi-
ivare developers, this article argues that there is a historical continuity between
hackers and labour struggle. The common denominator is their rejection of
alienated work practices, which suggests that corporate involvement in the
computer underground, far from inhibiting further struggles by hackers, may
function as a catalyst for them.

Introduction

p n this article, we propose that the history of labour struggle is
j continued in the hacker movement — for example, in the case
Ü of employees who crash their employers' computer equipment.
Framing the discussion in this way highlights the kinship between
the tradition of machine breaking in labour conflicts and hackers
who break into corporate servers or write viruses.' But this
connection is also valid for the hackers engaged in developing free
software and open source software (FOSS) — and indeed, we are
mainly concerned with the activity of the latter group.

Advocates of 'open source' tend to portray its development
model as a neutral advancement of the method for developing
software that leads to better technologies.' In support of their
claim, they can point to the wide adoption of FOSS applications by
the computer industry. For instance, the dominant server software
and scripting language on the worldwide web are the Apache

53



Capital & Class 97

HTTP server (Netcraft, 2008) and the PHP programming language
(Hughes, 2002). Linux runs on more architectures and devices than
any other operating system today (Kroah-Hartman, 2006);
Sendmail is responsible for routing the majority of email messages;
BIND is indisputably the most widely used DNS server; and even
the world wide web itselP is free software. Due to the terms under
which these products are distributed, they are available for
everyone to use, modify, redistribute and sell — that is, redistribute
for a price.

The motivation of hackers for writing software and giving it
away for free is one of the most widely debated topics among
academics studying the hacker movement. Economists try to square
this behaviour of hackers with the assumption of the rational
economic man. They assume that hackers hand out software for
free in order to improve their reputation and thus employability in
the future: that the monetary reward has just been postponed
(Lerner & Tiróle, 2002). But while this statement may describe a
current trend in the computer underground, it fails to explain the
motivation of hackers prior to the establishment of a market in
FOSS products. Neither does the opportunity-cost model take into
account hackers who spend their time on illegal activities such as
writing viruses and cracking encryptions. When hackers are asked
about their motives, they play down the economic incentives and
point to the fun of writing software, often comparing the joy of
writing free software with the toil of waged labour (Shah, 2006).''

In our view, the joy of participating in FOSS projects should be
seen against the backdrop of alienated work relations. Hackers gear
their labour power towards the use value of the software as
opposed to its exchange value: free software is produced to be used,
not to be sold. In FOSS projects, work is an end in itself rather than
a means for something else. That is the deeper meaning of the
common expression among hackers that they write code just to
'scratch their itch' (Raymond, 1999). In attempting to escape from
alienated existence, the hacker movement has invented an
alternative model for organising labour founded on the common
ownership of the means of production, on volunteer participation
and the principle of self-expression in work. It is this promise that
lies at the heart of the politics of the hacker movement. The
practice of 'hacking' indicates the distance between doing and wage
labour — a claim that can be substantiated using concrete political
gains. One example is that of strong encryption programmes like
Pretty Good Privacy, which are made publicly available to prevent
governments from eavesdropping on citizens. Another case is the
surge of anonymous file-sharing networks that have encouraged

54



The hacker movement as labour struggle

mass defection from the intellectual property regime.' These
systems would not have been possible had decisions over
technology still been confined to market incentives, corporate
hierarchies and government regulation.

It is true that from the perspective of capital, the hacker
community presents an opportunity to tap into a well of gratis
labour. Enterprises take FOSS, customise it for their clients,
package it under a brand and sell services on top of it, thus
lowering the cost of in-house product development and putting a
downward pressure on wages and working conditions in the
computer sector. In the second half of this article, we elaborate on
Karl Marx's theory about 'surplus profit' and the 'equalisation of
social surplus value' in order to conceptualise the way business
models based on FOSS operate. Even so, we do not conclude that
the hacker movement has ceased to be a potential source of
resistance against capital. Whether hackers pose a challenge to
capital or if they will be more of a threat to organised labour is a
question that has to be decided in struggle.

Programming and labour struggle

In our use of the term hacking, we mean the act of taking a pre-
existing system and bending it to serve a different end from that for
which it was originally intended, and hence it is implicit in hacking
that its significance cannot be known simply from knowing its point
of departure. We emphasise this because the political pretensions
of hackers can easily be dismissed. The majority of fiackers are
white, male and belong to the western middle class. Likewise, the
profession of programming is descended from white-collar
engineers. Historically speaking, those engineers and the
mainframe computers over which they presided were instrumental
in imposing management control over factory workers. As for the
internet, most people are familiar with its origin in the military-
industrial complex. Without doubt, something of that heritage is
reflected in the worldview of the hacker movement. A common
point of departure when hackers position themselves in the world
is the notion of the information age. The concept was cooked up
during the Cold War by US social scientists wishing to replace
Marxism with a less subversive master narrative. The ideological
load of the 'end-to-ideology' argument that underpins notions
about the information age has been vividly demonstrated before
(Webster, 2002; Barbrook, 2007). Thus it is understandable that a
chorus of left-leaning scholars over the years has decried 'cyber-
politics' for being individualistic, consumerist and entrepreneurial

55



Capital & Class 97

(Siegel & Markoff, 1985; Kroker, 1994; Liu, 2004). Many hackers are
aware of the paradoxical blend between libertarianism and
socialism that underpins their philosophy and indeed, have often
pointed it out to scholars.

The politics of hacking is hard to pin down because it is a
synthesis of many irreconcilable things. To use a fashionable term,
it is a hybrid. On the one hand, there is the line running from the
white-collar engineers of the 1950s to present-day hackers; and on
the other, another line connects hacking to the resistance of the
machine operators working under those engineers. In order to
prevent accidents and malfunctions, machine operators have often
by themselves and against the wish of managers made efforts to
become familiar with the instructions relating to their machinery.
In addition, once operators understood how the technology
worked, they knew how to reconfigure the apparatus and lower its
work pace, which had been previously set at a higher speed by
managers and engineers. Managers responded to this practice by
hiding the mechanics from the operators (Noble, 1986), and thus the
conflict of interest between labour and capital over the
exploitation of surplus value was now played out in a struggle over
who had access to the technology. It is the same concern that
informs hackers' demand for free access to information and free
software tools. What workers and hackers have in common is their
rejection of Taylorism.' This bond is made evident the more
routinised the programming profession becomes (Kraft, 1977).

Routinisation was given a strong impetus in the 1950s, when
computers began to be used by businesses. A labour market for
programmers was created together with educational organisations
that trained and certified programmers. The goal of ensuring a
smooth supply of computer professionals, however, turned out to
be elusive. For as long as a market for programmers has existed, it
seems to have been plagued by a supposed labour shortage
(Chabrow, 2008). It is not a shortage of trained programmers in
absolute numbers that has troubled corporate recruiters, though.
Rather, once managers discovered that some programmers were
several times more productive than others, they recognised a
problem in identifying the right programmer for the job.' Given
that living labour accounts for two-thirds of total costs in software
development projects (Lakha, 1994), and that 'the cost of software
has always been development cost, not replication cost' (Brooks,
1987), the question of how to increase the productivity of labour
has been a looming issue (Kim, 2006). Over the years, managers
grew increasingly disconcerted by the absence of 'a universally
accepted classification scheme for programmers' based on

56



The hacker movement as labour struggle

'accepted norms with regard to biographical, educational and job
experience data' (Sackman et al., 1969).

The difficulty of employers in deciding whether a potential
programmer will perform poorly or exceptionally can be
attributed to a failure of capital in measuring this kind of labour.
Such a failure is also suggested by the diversity of backgrounds
within the software community, as has been often commented by
insiders: 'In what other field are you likely to find a Ph.D and a
person whose education stopped at the high school level working
as equals on the same difficult technical problem, e.g., the
development of a compiler.?' (Orden, 1967: 147). The inability of
capital to measure the labour of programmers is a result of their
resistance against Taylorism. In the words of a manager, 'the
technologists more closely identified with the digital computer
have been the most arrogant in their wilful disregard of the
nature of the manager's job. These technicians have clothed
themselves in the garb of the arcane wherever they could do so,
thus alienating those whom they would serve' {Datamation, 1966).
The nascent discipline of software engineering grew, to a certain
extent, out of managers' compulsion to rationalise the work
process of programmers." In contrast to the 'black art' of code
writing, software engineering was heralded in trade magazines as
'the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software'.' This is not to say that the academic field of software
engineering was a managerial plot; but merely that the
innovations that sprang from its bosom were systematically
deployed by managers in order to extend their control over the
labour process. A case in point is that of the assemblers,
compilers and technologies that come under the rubric of
'automatic programming', designed to perform a function
formerly carried out by a human programmer (Kraft, 1979; Parnas,
1985). Another set of innovations that descends from software
engineering is the use of methodologies. Methodologies (i.e.
structured approaches or object orientation) provide frameworks
within which programmers are constrained from doing things
incorrectly. In the hands of managers, however, these techniques
have often turned into instruments of control (Glass, 2005;
Keggler, 1989; Kraft, 1979), since they increase managers' ability to
break the programming process down into functions consisting of
a definite number of tasks. Thus specific tasks can be assigned to
programmers while managers reserve for themselves the
decision-making authority. There is nothing inherently stifling in
these methodologies, styles, and techniques — were it not the



Capital & Class 97

case that they have been used to turn programmers into fragment
labourers and deny them knowledge of the whole of the labour
process (Hannemyr, 1999).

Karl Marx's analysis of how capital incorporates the labour
process provides a lens through which the historical transformation
of the programming profession from the 1950s till today can be
viewed. The subsumption of labour under capital unfolds in two
stages: in the first stage, due to the concentration of ownership over
the means of production, formerly independent producers and
artisans become wage earners. Thus they pass into the formal
control of capital. 'From the technological point of view', however,
'the labour process continues exactly as it did before, except that
now it is a labour process subordinated to capital'. The
subsumption of labour under capital is consummated, becomes
real, only when the labour process itself is transformed in
accordance with capital's needs. The second stage is marked by the
standardisation of work procedures, the parcelling-out and
deskilling of labour, and the absorption of human skills into fixed
capital (Marx, 1990 (1864)). These observations of Marx's were
expanded upon by Harry Braverman, who foresaw that the factory
despotism of his day would soon metamorphose into office
despotism. He rightly pinpointed the computer as playing a crucial
role in this transition. In hindsight, computerisation has confirmed
many of Braverman's suspicions, but it has also made apparent a
countervailing tendency. Although capital wrests control over the
labour process through the mediation of technology, it has to
concede to the workers some leeway in operating this technology."
Critics of Braverman quickly responded that he had over-stressed
the punitive side of capital, forgetting that capital also extends its
influence over workers by giving them a certain degree of
'responsible autonomy' (Friedman, 1977). A case in point are the
much-discussed table-tennis facilities put at the disposal of
programmers at Googleplex and other high-tech firms. If we
choose to see computer firms investing in FOSS development as
cases in which research and development costs have been
outsourced to volunteer communities, then it becomes clear that
'responsible autonomy' enjoys pride of place among capital's
strategies for managing labour. The same thing, however, could also
be understood as being the subsumption not only of work but of
the whole of society under monopoly capital. In describing the
unfolding of such a trend, Harry Braverman made a comment that
squarely places FOSS development in the context of labour
theory: 'So enterprising is capital that even where the effort is made
by one or another section of the population to find a way to nature.

58



The hacker movement as labour struggle

sport, or art through personal activity and amateur or
"underground" innovation, these activities are rapidly incorporated
into the market so far as is possible' (Braverman, 1974: 279).

The practice of hacking: Free software and open source development

The rise of a consumer market in personal computers in the 1970s
coincided with a hacker community spawned outside elite
academic institutions. Though mutually dependent, the two
spheres soon clashed, since the hacker practice of freely sharing
software code obstructed the establishment of a market in software
(Gates, 1976). This conflict has intensified over time, as the industry
has shifted its focus from selling hardware to selling information
and software products. The hacker community was politicised in
response to the attempts by capital to enclose computer
programmes under intellectual property law.

The struggle of hackers against proprietary software has been
championed hy the Free Software Foundation (FSF). The
organisation was founded in 1985 by Richard Stallman, and its goal
is the development of a computer standard consisting entirely of
free software (Stallman, 1999). In order to ensure that software made
available for free could not be expropriated by individual rights-
holders, Stallman devised the GNU General Public Licence
(GPL), commonly referred to as 'copyleft'. The free licence makes
use of the privilege that copyright law gives authors to specify the
conditions for using their creations. With the GPL, conditions are
added that increase rather than restrict the rights of the user to run,
modify, and re-distribute software. Ironically, it is copyright law
that gives the free licence teeth, rendering it possible to enforce
violations. But instead of backing individual rights-holders,
copyleft installs a regime of common ownership. Proof of the
continued relevance of the licence is that tens of thousands of
software programmes have been released under the GPL, and the
common pool of free software grows bigger by the day."

The existence of this free software suggests that the production
of computer applications can be organised without intellectual
property relations and, by extension, without the mediation of
capital." The making of the Linux operating system kernel gives
some hints. Linus Torvalds initiated the project in October 1991. He
described it as a tool 'for hackers by a hacker', to which each
contributed on a purely voluntary basis (Torvalds, 1991). The
development of an operating system is a huge undertaking
involving a gigantic programming effort and the expenditure of

59



Capital & Class 97

thousands of man-hours. Coinciding with the diffusion of the
internet in the early 1990s, Linux was the first project that leveraged
the computer network for large-scale, geographically distributed
collaboration, and the size of the joint effort behind it is positively
correlated to its rapid pace of releases. In the first month after
Linus Torvalds's announcement, there were three releases. Prior to
the release of version i.o in March 1994, there were ten releases in
December 1993, fourteen releases in January 1994 and eleven in
February 1994. This practice of releasing 'early and often' runs
counter to typical commercial software development, where users
come into contact with the product only in its final stages. Early
versions are 'buggy' or flawed, and companies do not want to wear
out the patience of their customers. In the Linux project, by
contrast, this practice proved decisive in motivating participants,
giving them credit for their recent contributions and spurring them
to new efforts. Community etiquette prescribes that all
contributions are mentioned in the credits file included in each
version. In this way, contributors more readily recognise
themselves in the product of their collective labour and recognise
it as their own.

In the early years, the process by which Linux was developed
was rather straightforward: diagrammatically, it followed a straight
line from Torvalds who distributed the official version to the
individual programmers who downloaded the software, made
changes to fix bugs or augment its functionality, and then fed them
back to Torvalds to review and decide whether or not to integrate
them in the next official version. Traditional yardsticks of software
engineering were shunned: there were no deadlines, release dates
or system-level design. In the absence of a centrally planned
division of labour by which programmers might be assigned
specific tasks, developers took on tasks as their own interests best
dictated. However, in order to alleviate the strain forced upon the
project's coordination by the expansion of the contributing group,
an organisational structure gradually took shape: about a dozen
hackers who had done extensive work on a domain of the system
took on the task of reviewing patches'' submitted by the wider bug-
fixing group. These 'trusted lieutenants' are each responsible for
maintaining a part of the kernel, and contributors send their
patches directly to them.

Only a handfiil of FOSS projects have adopted a formal voting
procedure for electing project leaders and settling disputes. In most
cases, the administration of projects appears as informal, opaque
and hierarchical. Upon closer examination, however, there turns
out to be a different kind of check against power asymmetries. The

60



The backer movemetit as labour struggle

position of lieutenants is granted by means of recognition by the
community, and this authority is constantly subject to withdrawal
(Moody, 2001: 81, 84). Hence, the role of the lieutenant is not that of
a leader in the customary sense of the word. Even Linus Torvalds,
in spite of his high prestige, has been forced to back down from
decisions when developers threatened to sideline him. Essentially,
the direction of the Linux project derives from the cumulative
synthesis of modifications contributed by individual programmers
(van Wendel de Joode, 2005; Ingo, 2006). When two different
solutions compete for the same problem, both are tried out
(Torvalds, 2004). Thus conflicts over technical issues are 'resolved'
in parallel development lines. In a community that 'rejects kings,
presidents and voting, but believes in rough consensus and running
code' (Clark, 1992), decisions are made by those who do the work
(McCormick, 2003), and the freedom of developers to vote with
their feet is key. Basically, it is this right to 'fork'"» a development
project that is protected by the General Public Licence. Project
leaders are thus kept on their toes, because the relevance of a fork
depends on the commitment of its developers and users.

The same philosophy can also be read out from the modular
architecture of the Linux kernel. Described in technical terms,
modularity is a form of task decomposition. It is used to separate
the work of different groups of developers, creating, in effect,
related yet separate sub-projects. Because a modular system 'can be
built piecemeal, and others can help by working independently on
some of the various components' (Moody, 2001), a modular design
decreases the total need for coordination and enables parallel
development. Torvalds explains, 'With the Linux kernel it became
clear very quickly that we want to have a system which is as
modular as possible. The open-source development model really
requires this, because otherwise you can't easily have people
working in parallel. It's too painful when you have people working
on the same part of the kernel and they clash' (Torvalds, 1999). The
parallel development structure of the Linux kernel is
consummated in parallel releases oí the product. The parallel release
structure for Linux was initiated with version i.i in April 1994, when
Linux was split into two trees: the stable and the development
branch." In retrospect, the phenomenal growth of Linux can be
traced back to this decision. Contrary to the expectation that as
Linux grew in size and complexity its rate of development would
inevitably slow down, an analysis of Linux for the years 1994 to
2004 shows that the development branch keeps growing at a super-
linear rate (Robles, 2005; Godfrey & Tu, 2000). The important point
to note here is that modularity is not just a choice of design that

61



Capital & Class 97

has proven technically superior in managing a decentralised and
collaborative software project." This particular design choice
reflects the development process in which it was made, and as such,
modularity helps to reinforce the social relations and the values of
the hacker community.

A labour theory approach to FOSS development raises the
question of how work is distributed in the hacker community. In the
fourteen versions of Linux (from version 2.6.11 to 2.6.24) released in
the space of nearly three years (from March 2, 2005 to January 24,
2008), 83,432 changes were contributed by 3,678 distinct individuals.
Averaging j,ooo changes per (stable) release and 2.7 months between
(stable) releases, Linux grows by a phenomenal 10 per cent per year.''
Volunteers account For approximately 27% of changes, followed by
Red Hat (11.2%), Novell (8.9%), IBM (8.3%), Intel (4.1%), Linux
Foundation (2.6%), Consultant (2.5%), SGI (2.0%), MIPS
Technologies (1.6%), Oracle (1.3%), MontaVista (1.2%), Google
(1.1%), Linutronix (1.0%), HP (0.9%), NetApp (0.9%), SWsoft
(0.9%), Renesas Technology {0.9%), Freescale (0.9%), Astaro
(0.9%), Academia (0.8%), Cisco (0.5%), Simtec (o.j%), Linux
Networx (0.5%), Q^Logic (0.5%), Fujitsu (0.5%), Broadcom (o.j%)
and others. The overall participation by firms has been steadily

Table 1 : Number of individual developers and employers

2.6.11
2.6.12

2.6.13

2.6.14

2.6.15

2.6.16

2.6.17

2.6.18

2.6.19

2.6.20

2.6.21

2.6.22

2.6.23

2.6.24
. 1

483

701

637

625

679

775

784

897

878

728

834

957

991

1,057

71

90

91

89

96

100

106

121

126

130

132

176

178

186

62



The hacker movement as labour struggle

increasing, as has the number of contributing developers {see Table i
on page 6z)?

Despite the large number of contributors, however, the majority
of work is still done by a relatively small group of core developers.
The top ten contributors account for ij per cent of changes, and
the top thirty for 30 per cent (Kroah-Hartman, Corbet &
McPherson, 2008). Similar distributions of work across the
development community have been observed in other big free
software projects such as Apache, Mozilla and FreeBSD (Mockus et
al., 2002; Dinh-Trong & Bieman, 2005). The numbers suggest an
asymmetry in workload — but that does not necessarily translate
into a concealed, centrally planned division of labour. Rather, the
division of labour in FOSS development is the immediate result of
the usual procedure by which one joins a project and advances from
peripheral (yet necessary) activities such as problem-reporting and
problem-fixing to the development of new functionality. Since the
right to commit changes to a project's central repository (i.e.
version-control system)" is conferred only to those contributors
with a long history of accepted patches, one typically joins a
project by reporting problems and submitting fixes to problems
already reported. In this way, FOSS projects have found a
mechanism for the selection of programmers to the core
development group that resonates with the strong meritocratic
ethos in the hacker community."

How capital is enrolling user communities in the valorisation process

The development model of hackers has won widespread
acceptance in the business community in the last ten years. An
open invitation to big business was sent in 1998 after the Freeware
Summit in Palo Alto, at which many of the movers and shakers in
the hacker subculture had gathered with the goal of getting
corporations involved. Crucial to their plan was the choosing of a
label that sounded less threatening to the computer programming
status quo than did the term 'free software'. The meeting decided
to use the label 'open source' instead. It quickly spread, and has
become the term by which most outsiders know hacker software
today. Shortly after the summit, IBM announced its commitment to
open source. The company has since invested heavily in Apache
and GNU/Linux, parading its support for open source with the old
hippie slogan 'Peace, Love, Linux'." Oracle, Compaq, Dell, Hewlett
Packard, Intel and many others quickly followed suit, while the
influx of multinationals spurred the growth of medium-sized
companies such as Red Hat, Novell and MySQL, which specialised

63



Capital & Class 97

in FOSS products and services. Nowadays, almost every major
computer company, with the notable exception of Microsoft, is
going out of its way to befriend the hacker community (Weber,
2004). It is reasonable to assume that the composition of the hacker
community has been transformed by the recent inflow of capital. A
study of 287 FOSS projects came up with the estimate that
approximately 40 per cent of all contributors were either directly
paid to perform the task in question, or encouraged by their
employers to partake in free software projects during office time.
Further, roughly 58 per cent of the survey respondents had day-
jobs in the IT sector, while another 20 per cent were computer
science students. In consideration of this, it is not unjustified to
look upon the FOSS community as a basin for the provision of
'lifelong learning' to employees. While these observations are
consistent with other studies that report a sizeable involvement of
hired employees in volunteer development communities, this
survey is additionally interesting because it registers traces of
workers' discontent. About 17 per cent of the respondents said they
were working on FOSS projects without their supervisors being
aware of it. This finding should caution us from jumping to the
conclusion that the extensive representation of firms in the hacker
community translates into corporate control over those activities
(Lakhani & Wolf, 2005).

The corporate embrace of the FOSS development model
should be seen against the background of a restructured labour
market. A feature of this restructuring is the effacement of the
border between consumers and producers. Such a trend was
already being proposed by futurists in the 1980s under the label 'the
rise of the prosumer' (Toffler, 1981). Nowadays, it is part of the
canon of intellectual property critique to situate the conflicts
surrounding copyright law in the context of active consumers and
fandom. Both futurists and critics expect that fans will bring about
a more democratic, participatory form of media consumption.
They cherish the altruism of communides working together.
Barely masked under the fanfare is the bottom line of profit.
Business gurus are more upfront: with them, the opportunity to get
rich quickly by enrolling the community is directly spelled out
(Hagel & Armstrong, 1997; Libert, Spector & Tapscott, 2007; Silver,
2007). It thus becomes evident that this trend borders on more
familiar experiments in laissez-faire capitalism and old-hat
marketing scams such as viral marketing, Tupperware parties and
pyramid schemes. What they have in common is the involvement of
the customer as the chief promoter and developer of the product.
As critical voices have pointed out before, work assignments are

64



The backer movement as labour struggle

being self-sourced and crowd-sourced in an economy that
increasingly depends on the unpaid labour of volunteers and users
(Terranova, 2004; Giménez, 2007).

FOSS firms provide a good point of departure for theorising
about a situation that has variously been described as 'the real
subsumption of society' and 'the social factory'. We do not believe
that as a result the economy has been rendered immeasurable." On
the contrary, the profitability of FOSS firms can be harboured
within Marx's theory of value. Red Hat is an example of what
might, borrowing from Marxist terminology, be called a 'surplus
profit' business model. A cornerstone in Karl Marx's economic
theory is that labour is the source of surplus value. Furthermore,
the amount of surplus value that a capitalist can accumulate
depends on the number of labourers he sets in motion. Marx
acknowledged a possibility, however, for the individual capitalist to
acquire more surplus value: sometimes the capitalist manages to
position his venture so favourably that the surplus value of
labourers hired by competitors flows into his pockets instead. The
textbook example is the capitalist who invents a superior technique
for producing goods. The cost of producing an item falls below the
social average, i.e. the average cost competitors pay when they
produce the item. The units are produced at different costs, but
since they are identical, all the items are sold on the same market for
the same price. Hence the most cost-efficient capitalist — the one
who produces the unit at the lowest cost — earns his efficiency gain
as a bonus from the other capitahsts. This boon is known as 'surplus
profit'. The advantage is ephemeral, since every other capitalist will
try to catch up with the inventor. When the majority has adopted the
superior way of doing things, the average production cost will even
out at the new equilibrium. The surplus profit vanishes for the
individual capitalist. It is not efficiency gains in 'absolute terms' that
provide the sought-for benchmark. It is efficiency gains vis-à-vis
other comparable producers. The crucial point here is that surplus
profit exists per definition as a deviation from the norm.

The existence of the FOSS business models can be understood
as a variation on this theme. Companies such as Red Hat hire
labourers to customise free software and provide support services in
addition to it. These activities generate a modest amount of surplus
value. The input of waged labour is marginal in comparison to the
vast amount of volunteer labour involved in writing the main body
of code. Gratis labour is not, though, automatically voided of value.
It has value if it duplicates waged labour performed elsewhere in
the economy. In other words, the value of unwaged labour by FOSS
developers stands in relation to the waged labour of in-house

65



Capital & Class 97

programmers. Both are working towards equivalent code solutions.
For as long as the social average cost of solving a computer problem
is determined by waged labour and intellectual property relations,
volunteer labour (hackers) and free licences cut costs below this
social average. In this case, surplus profit does not emanate from the
reduction of staff due to a technological innovation, but is created
when work migrates from paid labourers to unpaid users due to an
organisational innovation, i,e, crowdsourcing.

It remains an open question as to whether the copyright-
dependent fraction of the capitalist class (Microsoft, Hollywood,
record companies) can follow suit and close the gap in production
costs, Microsoft's 'shared source' policy, where selected customers
are given restricted access to Microsoft's source code, could be seen
as an attempt to close in on the distance between proprietary
software and FOSS, However, going by what historical experience
has taught us, the managerial preoccupation with control will
probably spoil the efforts. It might be that these companies are
unable to imitate the FOSS model and still sustain their high
profitability. If our statement is correct, the surplus-profit business
model of Red Hat will continue to prosper in the margins of
society, leeching off the differential level in the cost of production.

From this we can draw two important conclusions. First, that
hackers and campaigners against intellectual property law are
wrong in thinking that FOSS enterprises, powered with free
markets and free technology, are destined to supersede and replace
intellectual property monopolies. Red Hat can only be profitable in
relation to the inflated social average production cost of Microsoft,
Both depend in different ways on the existence of intellectual
property rights. Hence, abolishing intellectual property is
incompatible with capitalism, and this statement is not falsified by
the existence of enterprises that profit from FOSS products and
services. Second, if we are to follow our reasoning to its logical
conclusion. Red Hat's shareholders are not freeriding on the
community of volunteer developers but, through the 'equalisation
of social surplus value', they are intensifying the exploitation of
programmers employed by Microsoft, That claim is counter-
intuitive and should perhaps not be pushed too far. It is worth
mentioning, nonetheless, since it highlights what corporate
enthusiasm over open source boils down to. Namely, the
expectation of managers that free and open-source licences will
impose an overall downward pressure on the wages and working
conditions of in-house computer programmers.

Having said this, we are still a long way from delivering a final
verdict on FOSS, While companies certainly hope to pitch user

66



The hacker movement os labour struggle

communities against waged workers, crowdsourcing is but one
possible outcome from the current situation. When confronted
with such concerns, hackers usually point to the growing
employment opportunities within FOSS businesses. It could well
be that professional FOSS developers end up in a stronger position
compared to programmers working with proprietary software,
since free and open-source licences remove the edge that firms
otherwise have over employees due to their ownership of the
means of coding. When software tools are made publicly available
under a free licence, the main scarcity left on the market consists of
the skill to write software code, which gives the advantage to living
labour. In order to determine which is the most plausible scenario,
more research into the emerging labour market of FOSS
developers is required. Additionally, we have to take into
consideration the unique position of the computer sector within
capitalism today. This creates a 'chicken-in-every-pot' situation for
programmers, irrespective of whether they are working with FOSS
solutions or with proprietary software. That favourable position is
at the expense of every other worker, since computer technology is
pivotal in the neoliberal reformation of capitalism that most people
have encountered as weaker unions, flexible labour markets and
deskilling. Thus, while some computer programmers are confident
that they will ride out the crowdsourced mode of capitalism, other
workers may not be so fortunate (Ross, 2006).

An assessment of the surplus-profit model of FOSS firms must
also be weighed against the subjective side of this story, and the
political claims made by hackers. It is worth bearing in mind that
the computer underground was forked out of the New Left and the
movement surrounding 'appropriate technology' (Markoff, 2005).
Strong voices within the computer underground continue to stress
social and ethical concerns about free software, and many hackers
choose free licences for political reasons. Hence, capital was not the
mastermind behind FOSS development, though the computer
industry is a fast learner and tries hard to recuperate the
disturbance. A sign of this is that companies are making millions
out of the volunteer efforts of hackers. Simply to state this fact
closes the matter for sceptical commentators. They believe that the
subversive potential of FOSS development, if there ever was one,
has by now been exhausted. But by analogy, the same critics should
also say that there is nothing subversive in workers' struggle, since
companies profit from them. In our opinion, the situation is exactly
the opposite. It is the fact that FOSS communities have been made
sources of surplus value for capital that provides the spark that
might radicalise the hacker movement even further, throwing parts

67



Capital & Class 97

of it into direct struggle; and it is for the same reason that their
challenge to capital's domination is congruent with the resistance
of waged workers.

References
Barbrook, R. (2007) Imaginary Futures: From Thinking Machines to the Global

Kí7% (Pluto Press).

Berners-Lee, T. (2000) Weaving the Web: The Past, Present and Future of the

World Wide Web (Texere).

Brooks, F. P. (1987) 'No silver bullet: Essence and accidents of software

engineering'. Computer, vol. 20, no. 4, April.

Castoriadis, C. (1976) The Revolutionary Problem Today.

Chabrow, E. (2008) 'The new IT worker shortage', CIO Insight, 15 January,

available online at <www.cioinsight.com>.

Ciarrocchi, P. (2005) 'Introduction to Linux kernel development process',

at <http://linux.tar.bz/articles/2.6-development_process>

Clark, D. D. (1992) 'A cloudy crystal ball: Visions of the future', plenary

presentation at 24th meeting of the Internet Engineering Task Force,

Cambridge, Mass., 13-17 July.

DiBona, C , S. Ockman & M. Stone (eds.) (1999) Opat Sources: Voices from

the Open Source Revolution (O'Reilly).

Dinh-Trong, T. T. &J. M. Bieman (2oo_j-) 'The FreeBSD project: A

replication case study of open source development', IEEE Transactions

on Software Engineering, vol. 31, no. 6, June, pp. 481-494.

Editorial (1966) 'The thoughtless information technologist'. Datamation,

vol. 12, no. 8, quoted in N. Ensemenger & W. Aspray (2000) 'Software

as labor process'. Proceedings of the International Confereitce On History of

Computing: Sofiware Issues, Paderborn, Germany, j - 7 April.

Friedman, A. (1977) Industry and Labour Class Struggle at Work and Monopoly

Capitalism (Macmillan).

Gates, B. (1976) 'Open letter to hobbyists'. Homebrew Computer Club

Newsletter, vol. 2, no. i, p. 2.

Giménez, M. (2007) 'Self-sourcing: How corporations get us to work

without pay!' Monthly Review, vol. J9, no. 7.

Glass, R. L. (2005) 'The plot to deskill software engineering'.

Communications of the ACM, vol. 48, no. 11, November, p. 22.

Godfrey, M. W. & Q. Tu (2000) 'Evolution in open source software: A

case study'. Proceedings of the International Confereitce on Sofiware

Maintenance, San Jose, California, October, pp. 131-142.

Hagel, J. & A. Armstrong (1997) Net Gain: Expanding Markers Through

Virtual Communities {Harvard Business School Press).

Hannemyr, G. (1999) 'Technology and pleasure: Considering hacking

constructive'. First Monday, vol. 4, no. 2; online at <www.firstmonday.dk>.

68



The hacker movemenf as labour struggle

Hardt, M. & A. Negri (2000) Empire {Harvard University Press),
Hardt, M. & A. Negri (2004) Multitude: War and Democracy in theAgeof

Empire (Penguin).
Hughes, E (2002) 'PHP: Most popular server-side web scripting

technology', Linux Weekly News, 3 June, at <http://lwn.net>.
Ingo, H. (2006) Open Life: The Philosophy of Open Source, trans. Sara

Torvalds, self-published.
Keggler,J. (1989) 'Structured programming', message posted to

<comp.unix.wizards> newsgroup, 3 February.
Kim, W. (2006). 'On assuring software quality and curbing software

development cost', Journal of Object Technology, vol. y, no. 6,
July-August, pp. 35-42.

Kraft, P. (1977) Programmers and Managers: The Routinization of Computer
Programming in the United States (Springer-Verlag).

Kraft, P. (1979) 'The routinizing of computer programming'. Sociology of
Work and Occupations, vol. 6, no. 2, May, pp. 139-15J.

Kroker, A. (1994) Data Trash: The Theory of the Virtual Class
(St. Martin's Press).

Kroah-Hartman, G. (2005) 'How to do Linux kernel development', at
<http://lxr.linux.no/source/Documentation/HOWTO>

Kroah-Hartman, G. (2006) 'Myths, lies, and truths about the Linux
kernel', keynote presentation at Linux Symposium, Ottawa, 19-22 July,
online at <www.kroah.com>.

Kroah-Hartman, G. (2007) 'Linux kernel development: How fast it is
going, who is doing it, what they are doing, and who is sponsoring it'.
Proceedings of the Linux Symposium, Ottawa, Canada, 27—3ojune.

Kroah-Hartman, G.,J. Corbet & A. McPherson (2008) 'Linux kernel
development: How fast it is going, who is doing it, what they are
doing, and who is sponsoring it', Linux Foundation White Paper, April, at
<www.linux-foundation.org>.

Lakha, S. (1994) 'The new international division of labour and the Indian
software industry'. Modern Asian Studies, vol. 28, no. 2.

Lakhani, K. & R. Wolf (2005) 'Why hackers do what they do:
Understanding motivation and effort in free/open source software
projects', inj. Feller, B. Fritzgerald, S. Hissam & K. Lakhani (eds.)
Perspectives on Free and Open Source Sofimare (MIT Press).

Lerner, J. &J. Tiróle (2002) 'Some simple economics of open source'.
Journal of Industrial Economics, vol. jo, no. 2, June.

Levy, S. (1994) Hackers: Heroes of the Computer Revolution (Penguin).
Levy, S. (2001) Crypto: How the Code Rebels Beat the Government Saving Privacy

in the Digital Age (Viking).
Libert, B., J. Spector & T Dapscott (2007) We Are Smarter Than Me: How to

Unleash the Power of Crowds in Your Business (Wharton School
Publishing).

69



Capital & Class 97

Liu, A. (2004) The Laws of Cool: Knowledge Work and the Culture of

Information (University of Chicago Press).
MacCormack, A., J. Rusnak & C. Baldwin (2006) 'Exploring the structure

of complex software designs: An empirical study of open source and
proprietary code'. Management Science, vol. ^2, no. 7, July.

Markoff, J. (2005) What the Doormouse Said: How the ifO's Counter-Culture

Shaped the Personal Computer (Viking).

Marx, K. (1990 (1864)) 'Results of the immediate process of production',
appendix to Capital, Vol. i, trans. B. Fowkes (Penguin).

McCormick, C. (2003) 'The big project that never ends: Role and task
negotiation within an emerging occupational community', Ph.D
dissertation. University of Albany, NY.

A. Mockus, R. T. Fielding &J. D. Herbsleb (2002) 'Two case studies of
open source software development: Apache and Mozilla', ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,

July, pp. 309-346.
Moody, G. (2001) Rebel Code: Linux and the Open Source Revolution (Penguin).

Naur, P. & B. Randell (eds.) (1969) Sofiware Engineering Report of a

Conference Sponsored by the NATO Science Committee, Garmisch, Germany,

7-11 October 1968, Scientific Affairs Division (NATO).
Netcraft (2008) Web Server Survey, May, at <http://news.netcraft.com>.
Noble, D (1986) Forces of Production: A Social History of Industrial

Automation (Oxford University Press).
Oram, A. (ed.) (2001) Peer-to-Peer Harnessing the Power of Disruptive

Technologies (O'Reilly).

Orden, A. (1967) 'The emergence of a profession'. Communications of the
ACM, vol. 10, no. 3, March, pp. ^ j -^y.

O'Reilly, T. (2001) 'Remaking the P2P même map' in A. Oram (ed.)
Peer-to-Peer Harnessing the Power of Disruptive Technologies (O'Reilly).

Parnas, D. L. (1985) 'Software aspects of strategic defense systems'.
Communications of the ACM, vol. 28, no. 12, December.

Raymond, E. S. (1999) The Cathedral & The Bazaar (O'Reilly).
Robles, G. (2005) 'Empirical software engineering research on libre

software: Data sources, methodologies and results', Ph.D thesis.
Universidad Rey Juan Carlos, Madrid.

Ross, A. (1991) Strange Weather Culture, Science, and Technology in the Age

of Limits (Verso).
Ross, A. (2006) 'Technology and below-the-line labor in the copyfight

over intellectual property', American Quarterly, vol. 58, no. 3, pp.
743-766.

Sackman, H., W. Erikson & E. Grant (1968) 'Exploratory experimental
studies comparing online and offline programming performance'.
Communications of the ACM, vol. 11, no. i, January, pp. 3-11.

70



The hacker movement as labour struggle

Shah, S. (2006) 'Motivation, governance, and the viability of hybrid
forms in open source software development'. Management Science,

vol. 52, no. 7, July.
Siegel, L. & J. Markoff (1985) The High Cost of High Tech: The Dark Side of

the Chip (Harper & Row).
Silver, D. (2007) Smart Start-Ups: How Entrepreneurs and Corporations Can

Proftt by Starting Online Communities (John Wiley & Sons).

Stallman, R. M. (1999) 'The GNU operating system and the free software
movement', in C. DiBona, S. Ockman & M. Stone (eds.) Open Sources:
Voices from the Open Source Revolution (O'Reilly).

Taylor, F. W. (1911) The Principles of Scientiftc Management {Harper).

Terranova, T (2004) Network Culture: Politics for the Information Age

(Pluto Press).
Toffler, A. (1981) The Third Wave (Bantam).
Torvalds, L. (1991) 'Free minix-like kernel sources for 386-AT', message

posted to <comp.os.minix> newsgroup, 5 October, at
<http://groups.google.com/group/comp.os.minix>.

Torvalds, L. (1999) 'The Linux edge' in C. DiBona, S. Ockman & M.
Stone (eds.) Open Sources: Voices from the Open Source Revolution,

pp. ioi-n9 (O'Reilly).
Torvalds, L. (2004) Linux kernel management style, Linux kernel file added

10 October (Documentation/ManagementStyle), also at <http://
lxr.linux.no/linux/Documentation/ManagementStyle>.

Virno, P. (2004) A Grammar of the Multitude, trans. 1. Bertoletti,J. Cascaito
& A. Casson [Semiotext(e)].

Weber, S. (2004) The Success of Open Source (Harvard University Press).
Webster, F (2002) Theories of the Information Society, 2nd edition

(Routledge).
van Wendel de Joode, R. (2005) 'Understanding open source

communities: An organizational perspective', Ph.D dissertation.
Delft University of Technology.

Notes
Ross (1991) made the parallel between labour conflicts and hacking in
order to disprove the public image of hackers as merely apolitical,
juvenile pranksters.
For example, according to Tim O'Reilly (2001), open source is 'about
making better software through source sharing and network-enabled
collaboration'. See also <http://www.openp2p.com/p2p/2000/12/oj/
images/8oo-opensource.jpg>.
We are referring to the core components of the software, i.e. HTTP,
HTML and URL See the website of the World Wide Web
Consortium at <http://w3c.0rg>, or see T Berners-Lee (1999).

71



Capital & Class 97

4 In a similar vein, Hannemyr (1999) maintains that hackers become
freelance consultants (and, one might add, FOSS entrepreneurs) not
in order to make a profit, but to avoid having to work as waged labour
inside a firm,

5 These and other examples are described in the anthology by DiBona,
Ockman & Stone (1999). For a detailed account of how hackers made
encryption schemes available to the public, see Levy (2001).

6 Also referred to as scientific management, Taylorism is a managerial
credo rooted in the time-and-motion studies conducted by Frederick
Taylor (1911)- Its practice is synonymous with the fragmentation of the
labour process that ensues from the parceling-out and deskilling of
the labour of execution,

7 An influential early study by the System Development Corporation
for the Advanced Research Projects Agency of the Department of
Defence of the United States showed great individual differences in
programmer performance. The report underlined the significance of
finding a mechanism 'to detect and weed out these poor performers
[as this] could result in vast savings in time, effort, and cost'. See
Sackman, Erikson & Grant (1968),

8 The field of software engineering was defined in 1968 at the NATO
Software Engineering Conference, which stressed that 'backward
techniques' were at the heart of the problem facing software as a
professional field (Naur & Randell, 1969: 10), thus reflecting the
concerns about the management of programmers that weighed
heavily on managers' minds,

9 This is the definition of software engineering given in the 'IEEE
Standard Glossary of Software Engineering Terminology', IEEE std
610,12-1990 (1990).

10 Cornelius Castoriadis (1976: 75) has followed this thought to its logical
conclusion: 'What shows the critical importance of the distance
between the official organisation of production and the reality of the
labour process is the effectiveness of the form of struggle called
"working to rule" ... no sooner do the workers start to apply with the
utmost precision and to excruciating detail the rules and the
instructions they are supposed to apply than the factory is thrown into
full chaos',

11 As of June 16, 2008, Sourceforge.net (the largest application service
provider for free software projects) hosts 83,731 projects licensed under
the GNU GPL, at <http://sourceforge,net>,

12 On a more general note, this presupposition is consistent with what
some theorists have referred to as the communism of capital. See, for
example, Virno (2004).

13 A patch is a small piece of software designed to fix problems or update
a computer programme.

72



The hacker movement os labour struggle

14 A project^r¿.f when, as a result of their discontent with the official
branch, (a subset of its) developers make a copy of the code base and
start independent development, thus creating an alternative project.
On account of the rights granted to its users, FOSS can be forked
without the permission of its original creator(s).

15 It should be noted that the number of branches comprising the
development process has increased over time. In parallel with version
1.6, the convention used for numbering releases was changed in order
to accelerate the rate of stable releases, so that a new version is
released every two to three months. As a result, excluding subsystem-
specific branches, the development process now consists of the main
2.6.x kernel tree (which is where code from the experimental branch is
merged prior to being released as a new major stable release), the
2.6.x.y-stable kernel tree (from which minor stable releases are made),
and the 2.6.x-mm kernel tree (experimental). For a detailed discussion
of the different branches, see Ciarrocchi (2005) or Kroah-Hartman
(200J, 2007).>

16 Recent empirical research shows that modular design is characteristic
not just of Linux but of the FOSS development model in general.
Indicatively, MacComack, Rusnak & Baldwin (2006) demonstrate that
the code structure of Mozilla became increasingly modular after its
release under an open-source license.

17 The size of the Linux kernel code-base is 8.8 million lines in version
2.6.24.

18 These statistics are taken from Kroab-Hartman, Corbet & McPherson
(2008).

19 A version-control system is a software tool commonly used in large-scale

software development to track and provide control over changes to the

software product under development.

20 On the hacker ethic, see Levy (1994).

21 See <http://www-03.ibm.com/servers/eserver/linux/passport.swfi>.

22 We are here adressing one of the claims made by Hardt and Negri

(2000, 2004).

73






